Effects of Stimulus Type and of Error-Correcting Code Design on BCI Speller Performance

N. Jeremy Hill, ${ }^{1}$ Jason Farquhar, ${ }^{2}$ Suzanne Martens, ${ }^{1}$ Felix Bießmann, ${ }^{1,3}$ Bernhard Schölkopf ${ }^{1}$
${ }^{1}$ Max Planck Institute for Biological Cybernetics, Tübingen, Germany ${ }^{2}$ Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands

${ }^{3}$ Dept. of Computer Science, TU Berlin, Germany

Summary

The Farwell-Donchin speller is a brain-computer interface system in which the user watches the letter he wants to choose, and a temporal sequence of stimulus events at that location produces a corresponding sequence of event-related potentials in the EEG, which we then decode

1. BCI performance may be affected:

- positively by increased Hamming distances between sequences (exploiting the greater errorcorrection properties of better codes);
- negatively by an increased number of short target-to-target intervals (TTI);
- in some way that we do not fully understand, by the spatial arrangement of the stimuli.

2. Physical stimulus properties interact with the TTI and spatial effects.

- For example, our apparent-motion "flip" stimulus reduces both effects.
- Why? Stronger primary visual cortex responses? So far we've found no positive evidence for this from EEG scalp maps
- The net result is an overall improvement, and a particular advantage for codes with better error correction.

Experimental Methods

- 6 healthy subjects
- 16 blocks per subject, with block-by-block alternation between the traditional "flash" stimulus and our apparent-motion "flip" stimulus
- 20 trials (different letters to focus on) per block, with our 5 different codebook conditions interleaved randomly from trial to trial
- 72 stimulus events (potential "bits") per trial
- 167 msec stimulus onset asynchrony (one stimulus event to the next)
- 58 -channel EEG acquired at 256 Hz
- online BCI performance verified briefly at the end of the experiment ($90 \%-100 \%$ correct)
- performance evaluated using offline (leave-one-letter-out) prediction analysis

Our experiment explored the following 5 different codebooks (minimum Hamming distances per 24 bits are given in parentheses). In nearly all the literature so far, only $\mathbf{R C}_{\text {sep }}$ and $\mathbf{R C}_{\text {mix }}$ have been considered.
$\boldsymbol{R C}_{\text {mix }}$ (4)

$\mathbf{R C}_{\text {sep }}$ (4)

$\mathbf{R C}_{*}$ (4)

D10 (10)

D8 opt ${ }^{(8)}$

You might think that decoding accuracy should increase if Hamming distances are increased But this comes at the cost of decreased target-to-target intervals (TTI): red ' 1 ' marks TTI $=1$, orange marks TTI=2. Short TTIs may be a problem, since they lead to weaker brain responses: this is confirmed in figures A and B:

Indeed, short TTIs seem to lead to poor letter accuracy for $\mathbf{D} 10$ (compare black with red/blue in figure D).

D8 ${ }_{\text {opt }}$ was the result of our optimization of the tradeoff between these two considerations. Despite its smaller Hamming distances, it certainly beat D10 (compare green with black in figure D). But it only "broke even" with respect to the traditional RC codes (compare green with red/blue in D). Why? Well, our optimization did not consider psychophysiological effects of the codebook's spatial properties (the difference between $\mathbf{R C} \mathbf{c e p}_{\text {sep }}$ and $\mathbf{R C} \mathbf{C}_{*}$). It seems that these can also make a big difference (compare grey with red/blue in figure D). So, one future option would be to take this into account too.

However, we have one further twist. Traditionally the stimulus event is a "flash" (grey letters briefly turn white). But we had previously found that subjects performed better with an apparent-motion "flip". We find that this stimulus suffers a much smaller short-TTI disadvantage (compare figures B and C) and also a smaller spatial-disruption disadvantage (compare grey with red/blue in E). The result is that both error-correcting codes ($\mathbf{D} \mathbf{8}_{\text {opt }}$ and $\mathbf{D 1 0}$) perform better than the RC codes (compare black/green with the rest in E). In fact, $\mathbf{D} 8_{\text {opt }}$ together with the "flip" stimulus gives us the best performance over all.

